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ABSTRACT

A problem of gasification and heating of a solid due to the action of an
external energy source is Aiscussed. The problem involves a moving boundary
when the solid gasifies. At parts of the boundary where gasification is
taking place, a model problem looks very much like the one-phase Stefan
problem with an energy source at the moving boundary. However, any gas
produced is assumed to blow away immediately, and there is no conduction to
the solid from the outside, even when the surface temperature of the solid is
below tne gasification temperature. Accordingly, if the temperature is
extended to a function defined over all space by setting it equal to the
gasification temperature outside, the temperature will not necessarily be
continuous at the boundary, and instead a Neumann condition may be satisfied
therz. Also, no resolidification is possible, so that the region occupied by
the solid cannot increase. Thus, one has the possibility of a situation in
which the boundary may alternately move and be stationary. A generalized
formulation of the problem is given, a numerical algorithm is described, and

computational results are presented,
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SIGNIFICANCE AND EXPLANATION

The classical Stefan problem models the evolution of the ice-water
interface in a melting process as it moves under the influence of heat
conduction in the two phases. The gasification problem arises when one
irradiates a solid and vaporizes a portion of it, with the gas blowing away.
The gasification prohlem diffcrs from the Stefan problem in that the front can
move in only one direction, and the gas cannot resolidify.

In contrast to the case with the Stefan problem, in the gasification
problem the solid boundary can stop moving and start cooling down. In that
case the nature of the boundary conditions to be satisfied changes. A key
goal of this paper is to devise an algorithm which will automatically solve
one or the other type of boundary value problem as it becomes the relevant
one.

The paper presents an algorithm which solves a variety of boundary value
problems without explicitly locating the boundaries in question. Also
included is a means of treating the depnsition of energy on a surface without

location of the surface. Numerical results are obtained and compared with the
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NUMERICAL SOLTITION OF A GASIFICATION PROBLEM

Joel C. W. Rogers

1. Introduction

The problem we consider is of the following sort: A solid material is
exposed to an external source of heat. Heat is conducted internally through
the solid, and when the solid reaches a critical temperarure, it gasifies.

The gas thus formed blows away and no longer interacts with the solid. 1In the
version of the problem given here, the external heat source is radiant energy,
to which the solid is opaque and to which the medium external to the solid is
transparent. However, other types of heat sources may be treated as well; in
particular, heat sources of a frictional nature at the surface of the solid
may be considered, in which case the problem is better known as an "ablation"”
problem.

In the next section we will proceed with a careful description of the
phenomena we expect to find associated with the gasification process, and in
particular we will analyze the ways in which this problem resembles and
differs from the classical Stefan problem. On the basis of this analysis, we
will begin development of a mathematical model. A third section will discuss
more snecifically a time-discretized version of the model, the treatment of
boundary conditions, etc. Following this, there will be a brief description
of a numerical quadrature of the model, as well as computational results for a
particular problem whose initial and boundary data will have been chosen so as
to bring about a solntinn exhibiting the phenomena which are anticinated in

the second section. A final section aAdresses the question of the nature of
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the dependence of solutions of the time-discretized problem on the initial and
boundary data. We show that this dependence is not generally monotone in
character. Various weakened types of monotonicity which may "old are only
conjectured.

wWe should make it clear that we have not answered the critical question
of convefgence of the algorithm presented here, nor the guestions regarding
stability and regularity for the approximate solutions generated by the
algorithm. However, we would not have presented this paper unless, bolstered
by confidence in the essential correctness of our analysis of the salient
features of the gasification problem and the numerical results that we had
obtained, we felt that the convergence of the algorithm to a solution of the
problem could be proved.

With regard to the mathematical theory of solutions of nonlinear
parabholic equations, we place the importance of this problem in the following
context. The theory of the classical Stefan problem we consider to be in
fairly good shape, in respect both to the basic questions of existence and
uniqueness of solutions and of effective computational methods for solution.
For systems of degenerate parabolic equations in several space variables, the
situation is more complicated: The proofs of monotonicity and stability for
solutions of the Stefan problem do not go over to the general case of systems,
and indeed for some systems modeling phase transitions with solute diffusion,
the experimental evidence and some linear perturbation theories point to a
high deqree of instability and complexity for the boundaries hetween different
phases [71. The Aifficulties arisina in the treatment of parabnolic svstems in
several space variables are in some resmects similar to those encountered in
the stndy of hyperbolic systems in several space variables [R]. The

gasification problem belnnas to what mav e the simplest type of nontrivial
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svstem. There are two Jdependent variables, the enthalpy u and a quantity

x representing che fraction of material gasified at each point, but in fact
in many cases } is an explicit algebraic function of u, in which case the
problem can be put in Stefan-like form. Deparcures from this condition are
characterized by the fact that ; is constant in time. Accordingly, an
analysis of the mathematical changes wrought by enlargement of the Stefan
problem to the gasification problem may be very informative with respect to

the phenomena to be expected when one deals with more general parabolic

systems.

From the point of view of numerical analysis, there are twc aspects of
our treatment which may be of interest. The first is the means we use to
deposit radiant energy on a moving, generally irregular, surface (the gas-
solid interface) without explicitly tracking the surface. The second feature
is that, in certain regimes of the initial and boundary data, the problem
looks like a parabolic problem with fixed boundary and Neumann boundary data.
In that regime our algorithm will solve the problem without explicitly
locating the boundary. This is to be compared with limiting regimes in which
the classical Stefan problem reduces to a parabolic problem with fixed

boundary and Dirichlet data. Certain algorithms which have been given for the

Stefan problem will solve this problem without explicitly locating the

boundarv [2, 1, 4]1.




2. Governing Assumptions

Typically in the gasification problem, we will assume that the heat
conduction in the interior of the solid may be described by the equation
u, = Af(u) , (2.1) ,
where we may think of u as the "enthalpy" per unit volume and f(u) as the
"temperature"”. f(u) will be a nondecreasing Lipschitz-continuous function
of u. We shall assume that the solid material will only gasify upon reaching
a critical gasification temperature, which we may take equal to 0. Thus,
(2.1) will hold in the region where the temperature is below this number, that
is, is negative.
Suppose the energy transferred to the solid by the external energy source
is F times a Dirac measure on the surface. When the temperature of the
s0lid material at the surface remains below the gasification temperature,
enerqgy conservation at the solid boundary is expressed as
3
o (f(w)) = F , (2.2)
where n is the unit outward normal of the surface. In this case the
boundary is not changing, since no gasification is taking place. The
mathematical statement of this is that
Ven=290, (2.3)
where V s n is the normal velocity of the boundarv. However, during
gasification the temperature at the surface is just the gasification
temperature
f(u) =0 , (2.4)
and the surface moves with the normal veloncity
“AV en=F = 2 flu) (2.5)

an

where X is the increase in enthalpy per unit volume attained by the solid

mon its heing converted to gas.




Theré is no loss of generality in choosing u for the solid to be 0 at

the gasification temperature 0. Then for the gas u = \. We mav thus extenAd j
the function f(u), so far defined for u < 0, to the interval u € [0,)A] Dby
f(u) = 0, 0 <u < A . (2.6) 4

When the boundary conditions (2.4) and (2.5) apply, the problem looks very

much like a one-phase Stefan problem with sources, and it is known that a more

concise way of writing (2.1), (2.4), and (2.5) is in the form of a
"conservation" law (1]

u, = Af(w) + olx,t) , (2.7)
where (2.7) now holds over all space and f has been extended by (2.6). For
our problem, ¢ has the form

olx,t) ='F (2.8)

Ga{u<o} :
The form (2.7) can also be used as the basis for an efficient numerical
solution of N-dimensional problems which avoids the need for following the
moving boundarv. (The matter of the explicit appearance of the boundary in
the source term can be treated by a method to be described in the sequel.)
There are, however, some important limitations to the applicability of
the formulation (2.7). The “one-phase" Stefan problem is reallv a two-phase
problem for which heat conduction takes place in only one phase. The non-
conducting phase (in this case, the "upper” one) acts passivély as long as the
reaqion it nccupies is increasing with time, but when the region occupied by
the conducting mhase increases anywhere, the non-condunctinag rhase acts as a
reservoir of either pnsitive or negative (in this case, nositive) enerqgy. 1In
the one-phase 3tefan prohlem under the influence of extarna! =~ir-es, “» free
boundary can move in either way. In the gasification problem, on the other
1and, the aas, onece it blows away, has 1o further influence on the solid and

in partirnlar the free bnundary can move only one way, since the agas cannot




resolidify. Thus, although the formulation (2.7), in which the equation is

extended to the non-conducting phase, is quite natural for the one-phase
Stefan problem, in our problem the notion of a coexisting "“gas phase” is a
fiction.

Nevertheless, the fact that at times the gasification problem can be put
in the form (2.7) and the numerical simplifications brought about by this
possibility serve as an inducement for us to find an appropriate version of
the problem in the spirit of {(2.7). We have observed that the process of
gasification is irreversible, so that V ¢ n < 0. Thus, we can summarize the
boundary conditions (2,2)-(2.5) by noting that (2.5) holds in all cases, but
that on portions of the boundary, for certain times, we have

Venc?©0o, f(u) =20, (2.9a)

whereas on the remaining portions of the boundary or for the remaining times,

Ven=20, f(u) <0 o (2.9b)
From V e n < 0, we get
3_ f(u) < F (2.10)
on ! '
which looks mathematically something like an "obstacle" condition on %E. We

note that the conditions (2.9a) are of Dirichlet tvpe for f and the
conditions (2.9b) are of Neumann type for f. Thus, generally we may expect a
switching back and forth between Neumann and Dirichlet boundary conditions,
and an alternate stopping and starting of the boundary motion.

Immediately we discern a lack of reqularity for the solution of the
gasification problem as onnosed to the Stefan solution. For, in the case of
the latter, the temnerature f(n) has heen seen £H he continuonus '3]. But if
we extend f(u) to the region where there is no solid (and thus u = X) by
rhe convention f(u) > N there, we s2e that in the case of the Neumann

conditinns (2.%h), f(u) 1is generallv Adiscontinuons. (In fact, this is true

-H-
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no matter what value we choose for f(3).) In addition, because the solid,
upon gasification, is replaced by a vacuum, which is a perfect thermal
insulator, the gasification problem possesses instabilities with respect to
the initial and boundary data which do not occur for the Stefan problem. For
example, by changing the initial enthalpy to A on a set of arbitrarily small
measure, we can partition the solid into a collection of non-interacting
regions, on the houndary of each of which the boundary conditions (2.9b)
obtain, Then, invoking the lack of co.tinuity of f(u) under the influence
of these boundary conditions which was just observed, we may construct
solutions for which there is no uniform continuity of f(u) as the measure of
the set on which u has been set to A goes to 0, and for which thermal
contact between regions on different sides of the discontinuities of f has
been prohibited. 1In like manner, by shifting very slightly the positions of
the sources of external radiant energy and the directions in which they
radiate, one may gasify all the material along certain rays and thermally
insulate different parts of the solid from one another, thereby profoundly
affecting the solution. And by allowing the radiation to arrive in sharp
pulses rather than nniformlv Adistributed over a small interval of time, one
may increase the gasification of the material at the surface while minimizing
the conduction of heat to the interior.

In our picture the gas has enthalpy u = A and is transparent to
radiation, and hence there is no mechanism wherebvy u can exceed L. For the
Stefan problem, one can aive meaning to a value of u in (0,X): it is that

a volume fraction

max(n,N) = — {(2.11)

-7~




at a point has enthalpy A and is gas, while the remainder is solid with

enthalpy 0. Since values of u in (0,)) arise quite naturally when one
solves the Stefan problem with sources, (2.7), we may expect a similar
situation to develon when we try to cast the gasification problem in like
form. However, the values permitted the enthalpy at the solid boundary are
now not restricted to the set {0}, but may belong to the set {X,u < 0}.
Accordingly, if we denote the volume fraction at each point that corresponds
to enthalpy A by i, so that (1 - Q) denotes the volume fraction of solid
with enthalpy u < 0, we get for the total enthalpy u of the combination,
u=ull -y + xi, (2.12a)

or

X = > x(u) . (2.12b)

Here we have proceeded as if the solid material had a common enthalpy u when
; < 1. We could envisage situations in which, in the region where
0 < x <1, we had volume fractions a; of solid material with enthalpies
u, < 0, each set thermally insulated from the others. Then we would have
?ai=1—;(, ;aiui=<1-;<>a. (2.13)
i i
However, if we consider the assiqnment of initial and boundary conditions and
the gasification process itself as phenomena which are essentially subject to
multi-dimensional stochastic spatial fluctuations, albeit minute ones, it
Aanpears that the compartmentalization of the solid material on a microscopic
level intn suach components thermally isolated from each other would occur with

Arnhabhility 0, and we shall consider the solid material to have A sinagle-

“3lued enthalpy 1 and single-valued remnerature f(1).




o

From the foregoing considerations, we may derive equations for the time

evolution of i. If gasification is taking place we have 4 = 0 and

u
- - +
X = xtw, ¥ = Uxtw) o, = [(K-)t)+ . (2.14a)

But if gasification is not taking place, we have Neumann conditions at the

solid boundary, u < 0, and

X > xtu), X, =0 - (2.14b)

If x(x,0) = y(u(x,0)) ¥x, we can use (2.14a,b) to find x(x,t) imrediately
in terms of u:

i(x,t) =  sup x(ulx,t')}) . (2.15)

0<t <t
As regards the absorption of energy at the solid surface, as given by

(2.8), we treat the gas as if it were completely trangparent to the
radiation. The absorption of radiation in a region where gas and solid are
interspersed on a microscopic level should then be proportional, at each

point, to 1 - i. Accordingly, if O denotes the location of the source of

radiation, and we assume the source to be isotropic, a relevant quantity at

any point P is the following integral:

o)
1 ar,0) = [ (1 - xlo)nas , (2.16)
o]

where the inteqral is taken over the straight line coanecting P to 0. We

consider the solid to he completely opaque to the railation, and t-is leads to
F the requirement that all the radiant eneray be deposited at points P where
A(P,0) 1is as small as ronssible, subject only to the constraint that

ul(x,t) < 2 ¥X,t . (2.17)

-
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We have presented the physical considerations whi n have ga. et .. ir
treatment of the gasification problem. In the next section we wili nresent an
algorithm to solve a time-discretized version of the nroblem. ™ .5 aliniit’
will be of a sort that has been introduced to solve problems of the tyne (2.7,
[1]. We should note, however, that although we may resort at times 1n the
sequel to pseudo-physical lanquage to interpret the algorithm which we
develop, the algorithm to be presented will have been crafted to solve
precisely the problem whose physical and mathematical countenances have been
so far explained. The algorithm should not necessarily be construed as

describing also any physically realistic problems of a more general nature.

-10-
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3. Time-Discretized Formulation
If the Lipschitz coefficient of f(u), as given in (2.1), is 1/8, a

suitable numerical scheme to solve (2.7) with ¢ =z 0 1is, with T a time step

and u{nTt) approximated by u" [1],
™= - e+ s(3)eaE™) (3.1) 1
where j
sthy z et (3.2)

is simply the linear semi-group generated by the operator A. 1In the problem
we treat here, we may regard S(h) as Green's function for the heat equation
in RN. It will be convenient below to write out S(h) in this fashion

explicitly:

(s(hyv)(x) = jn Sthix,x')v(x')dx' . (3.3) ]
2

A pseudo-physical interpretation of (3.1) is that the equation

ACER) (3.4)

1
8

is an equation giving the evolution of u in terms of a diffusion of gf(u),

e

and that to find u™! we take uR?, subtract off Bf(u"), which is to be

diffused, and then add back S(%)(Bf(un)), the result of the diffusion.

If we are dealing with a problem for which (2.14a) applies ¥x,t such

] that 0 < y < 1, then in fact (3.1), supplemented by a term to represent the

effect of the external heat sources, will satisfactorily describe the time

e e e

4 evolution. However, in the more general case in which we may also have
; > yx(u) and Neumann conditions at the boundary, this alqorithm clearly will

not suffice.

In the first place, according to the pseudo-physical type of reasoning l

introduced above, the true measure of the "thermal energy" of the solid, per

unit volume of solid, should be QF(G) and not Rf{u), and the total amount

TR R TeTmemRaT T

I

’ -11-




of such thermal eneray, pner unit volume, is 8f(G)(1 ~~;). Here, in accord

with (2.12a)},

NN Vo A i T TR -

(3.5)

when ; < 1. Accordingly, we would subtract out Bf(G)(1 - i), then add back
S(%)[BE(B)H - X)]. However, in ditfusing the thermal energy Bf(u)(1 - y),
we have transmitted energy to regions where a fraction } of the volume acts
as a perfect insulator. Hence this portion of the diffused thermal energy
should be subtracted out and returned to the point from whence it came. This
means subtracting out ;S(%)[Bf(a)(1 - ;)] and then adding
!N S(%;x',x)i(x')Bf(G(x))(1 - }(x))dx'. This final subtraction of a portion
o? the diffused thermal energy and return to its source is the part of the
algorithm designed to conform to the insulating properties of the vacuum and
to yield the solution of a Neumann problem at the appropriate places on the

boundary. It is a direct generalization of the method of "images" used to

solve Neumann problems at planar boundaries for the classical equations of

w——t -

mathematical physics. Putting these arquments together, for the case when
Sreen's function is symmetric, as it is here,
Sthix,x') = S(h;x',x) , (3.6)

we are led to construct the function

u = u - e (-3 + s e (-3
' (3.7)
- st rpeah (=1 + ar) (= hs e T

+1
If there were no external energy sources, we wonld set n”? equal to

n . ) . ) ’
i . In *hat case, on apnroximating S(h) by the first twn termsg nf its

formal Taylor expansion,




S(h) » 1 + ha, (3.8)
we would get from (3.7), as Tt + 0,
up = (1= A=) = (1= E(WAN=Y) . (3.9)
In fact, (3.9) may be given a pseudo-physical interpretation by noting that it
can be derived, in the limit as the "mean free path"” o +» 0, from the

Roltzmann-like equation

u, = éﬁ {f q(izéiiL)f(ﬁ(x'))(1-§(x))(1-§(x'))dx'

o RN
(3.10)
- - - -
- £(ulx) (1=x(x)) | g(lfzf—l)(1-x<x'))dx'},
&
z 2
where [ g(r)ar =1, g >0, and Ap° = 0(1) as p + 0. Formally, (3.9) may
0
also be written
o = Ve (01 - 0ZvEE)) . (3.11)

However, when f(u) and ; are discontinuous, as may be the case at a sharp
solid~gas interface in the circumstance of Neumann conditions at the boundary,
the meaning of (3.11) in a distributional sense is not clear.
in the general case we have to add the effect of the external energy
n+1

n .
sources to in order to get wu . Let us suppose that the incident

energy F in (2.8) has the form

i'; . V-
F(x,t) = (t) |n {x(0? ;)I (3.12)
-1 Ix(0) = x|
where x(0) is the location of the source and W_q = |3BV|' By the unit
hall in N Aimensions.
-13-




The energy deposited between times nt and (n + 1)1 may reasmnably be

approximated by 1o(x,nt) when o is continuous with respect to t. Wwhen
o has the form (2.8), this quantity has a singularity at the solid

boundary. However, during the time T that energy is deposited, it is also
being conducted into the interior in the manner described by equation (2.1).
Accordingly, if f6 is a local value of f'(u) in the solid and fé > 0,
the energy will be spread out over a distance 0((1'!?,n-1¥)1‘/2 ) after the time
interval. It will be important for us to take this fact into account when
depositing the incident radiant energy. To spread the energy out over a
distance larger than O((TR.n-1T)1/2 ) would be needlessly to increase the width
of the free boundary (that is, the distance over which i changes from "near
0" to "near 1") generated by the algorithm. Experience with the Stefan

problem leads us to expect an approximate free boundary of width

41
o((1&n ;)/5), anyway [2]. Thus, we calculate un+1 from the equation

(/T Flno) (1=3"(x))

N-1 '
W41 x(0)=x]|
Wy = @) + _ (3.13a)
0 < a%(x) < V1

0 at(x) > /1
where, from (2.16),
0 -n
a(x) = [ (1 - x (@)as . (3.13b)
X
n+1 -n+1 . . .
Nnee has been found, is determined in accordance with a
semi-digcrete version of (2.15):
-n+1 -n n+1
= max(y L x(u ) . (3.14)

If we refer tn (2.12a) and (3.5), we find from (3.7) that

-14-
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1-x
and thus

x(@ <. (3.15)
Accordingly, if there are no external energy sources and un+1 = ﬁn, we get

-n+1 -0 : ; i i

from (3.14) that y = ¥ « This simply says that no material is gasified in

the absence of external sources.
We have only to check that the algorithm (3.7), (3.13), (3.14) guarantees
. ~n . f s .
that, if 0 < y < 1, then the following two conditions are satisfied:

-n+
(i) 0 < xn 1 < 1 and (ii) the time-discretized version of (2.17) holds, or

un+1 < A. These two conditions are actually equivalent, by (2.11), (3.14),
and the assumption 0 < }n < 1. By direct calculation from (2.%2a), (3.7),
and (3.13), we get

-n —
- - (
LA xnk + (1 y )Vt Flnt)

. (3.16)
Yo q1x(0) - b

(3.16) will imply that un+1 < A if we impose the following stability

condition on the size of the time step Tt:

Flnt)/t < A [dist(o, {xlu(x,0) < >‘})]N'1 . (3.17)
Y-1

9 The sufficiency of (3.17) follows from the observation that, if ;n(x) < 1,

then io(x) <1 and |x(0) - x| » dist(0, {x}u(x,0) < A}). 1In the

calculations to be described in the next section, we impose the stability

condition (3.17) on .




4. Numerical Quadrature and Computational Results

The computations we have actually performed have been one-dimensional
calculations for the case
A= 1, f(u) = min(u,0) . (4.1)
We see from (4.1) that we can choose B8 = 1. The algorithm described in the

last section can now be written

o™ - s (o= =Y B+ S (- DK
”—’2’2 VT - 0<¢d <yt (4.2a)
+ ,
0 a > v/t
-n+1 -n n+1
X = max(y ,xlu )) . (4.2b)

Since the expression (3.5) for u becomes indeterminate when ; > 1, we have
used the following determinaton of (1 - i)f(ﬁ) that is well-defined for all

values of } e [o,1]:

(1 - Y)E(w) = min(u - ,0) . (4.3)
We have broken the spatial region into a finite number of cells I, of
width Axi, 1 <i < I. We have imposed the conditions i =90, f(u) = -1 at

the left and i = 1 at the right, and we have considered the source to be at

the right of the mesh. We denote the characteristic function of I. by

i it

Xi(X) = (4.4)

. . ~n . .
we approximate the functions u™(x) and x (x) by the piecewise~constant

functions




I
u o~ z uxi ' (4.5a)

1
-n ~Nn
X o~ 121 N v (4.5Db)

and we denote the total enerqgy in LY by U?:

n n
Ui = (Axi)ui . (4.6)

For the operator S(T1), we have used an explicit finite-difference
scheme. Then the operator can be represented by its effect oun a
characteristic function:

Ax, 0 Axi

i -
Sty = a,_, CXm1 Y SaX T B CiXie

. (4-7)

Suitable coefficients c;, cg, cI can easily be calculated, and we note only

the result of such a calculation [6, p. 29]:
-1

ey = 3tldx, Y, (hx, 4o +Ax, )] : (4.8a)
e = 3r0a (ax,  +ox +0x, )] (4.8b)
T T A PR R R P ’ :
0 - +
ci = 1 - ci - ci . (4.8c)
Here we have set
1
AxHV2 =3 (Axi + Axi+1) (4.9a)
and
= = . .0
Ax0 Ax1, f\xI+1 AxI (4.9h)

We recall that the operator S{(1) is symmetric, as stated in (3.6).

However, the finite-difference analoq of S(T1) given above is nnt necessarily

symmetric if the mesh widths Axi vary with 1i. This lack of symmetry could




lead to a departure from strict energy conservation if one were to use the

algorithm (4.2) unthinkingly. Such a departure can be avoided if we return to
the arqument given in the paragraph immediately preceding (3.6). What we
should do is use the finite-difference representation of S{(71) given above
when S{t) operates on (1 ~ ;“)f(5“>, and use the transpose of this
representation when S(1) onerates on ;n. The transpose of the finite-

difference representation is given by

.10
Xt Cie1Xies (4.19)

T +
S (r)xi = c

i-1X%

i-1
The explicit nature of our representation of 3(1) forces on us an
additional stability condition for 1. A sufficient condition is that 1t

satisfy

T < 1 min((AX.)z) . (4.11)
2 i i

The finite-difference treatment of the energy deposition from outside

apportions to the cell 1I. the amount of energy V?, given by

i
n . %(nr)r -n — ;(nr)
= —_—r - —l .1
v min { 5 (1 XI)AxI/r 3 | (4.12a)

-~ I ~
"o (min(F(;T) = T v E(—%—Q)) .
J=i# * (4.12b)

<
|

1<i<I~1,

Denoting

n n -n
= mi - X, .0 4.13
Yi mm(ui X ) ( )

and putting the expressions above toqgether, we find, for 2 < i €1 - 1,




'F""""'""""""""""l-l!llllllllllllIlllIllIlllIlllIllllllll||||||l.....!............._.________T::“

n

- n +
1+1%5+1

Axi+ Y

n -Nn
Uy =0 Oty 17 Yie1%ia1Myg

]

(4.14)
~n + -n - n
- ek LU= e+ Omxg_gdeg) + vy

Special expressions are needed for i =1 and i = I. Since we are '
imposing the conditions 1 =0 and f(u) = -1 at the left and ; = 1 at the
right, we set
PALI Tn = = - =
Xg = 0 Xguq = 10 ¥ 1, v 0. (4.15)

Thus we get for i =1

n+1 n -n n - + n -n, + = n
= - - - - + . :
u, Uy, * {1 x1)(Y2c Ax, COAX1) Y1Ax1[(1 X5 )¢y c1] * Y, (4.16a) |
where .
+ 31
Cy = M (2. + <) * (4.16b)
1 1 2
and for i =1
n+1 n -n __n n -n - n
= + (1= - - + . .
Ut Up * Omxp Wy g ey ~ Y Uy dep + 9 (4-162)
The computational loop is completed by setting
n+1 n+1t
ug = Ui /Axi (4.17a)
and
-n+1 _ n+1 -n
X; = max((u.1 )+,xi) . (4.17b)
In the more general one-dimensional case, we get a finite-difference
relation of the sort
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n+1 n -n -n
Ul = U - ROI-XD) (] B
-n - -n -n
e {8 ey Flay 0 Ooxg )
+ -n -n
otk geg Flu U )

+ ax, eEM (1)
1 1 1 1

+

-n -n +-n
f(ui)(1_xi)Axi(ciXi+1

+

0-n., --n n
+ + vV .1
ciXi cixi-1) i (4.18)

+ - . :
where cy and c; Aare as given in (4.8a,b), and

0 _ e,
(ot 8 ci c

i i e (4.19)

A sufficient condition for stability of the finite-difference scheme is
1 . 2
T <5 Bmin(Ax,) . (4.20)
2 i i

; : -n :
u: is given in terms of ug and X4 by means of (3.5). For computational

R -n
reasons, for a sufficiently small ¢, one may wish to calculate ui from

fun - )‘-n
i Xy -n
T - > ¢
-n 1
- 1= x
ot = 4 1 . (4.21)
1
-n
0 1 - X{ < €

We performed a calculation with I = 120, Axi = .01 ¥i, 1t = .00005,
. . -0 0
uy = -1, 1 < i < 100, uy = 1, 10t < i < 120, and Xi = x(ui). We chose
?(t) = 6 independent of t.

letting the intersection of Iy00 and Ty01 bhe lozated at x = 0  ani

denoting by the "exact solution" the solution of the gasification problem

nosed on R with the solid reqgion initially occupying R_ and

u(x,0) = -1 ¥x @ R, we find that initially the exact solution satisfies




Neumann conditions at x = 0, and that u(0,t) is given by =~1 + &6/t/m,
until the time ty = m/36, when gasification commences and the front begins

to move. Further analysis of the exact solution indicates that for ¢t > to

but t - ty small, the position of the front is at

- 34
2
U

2
t) = (t - to) .

e i e i Y@ e e = L L e

vl v e 1 - -

If the solution of the gasification problem has a self-similar behavior as
t + @ it will be of the form 5
%"* % (t-t,) 3
u-+=~-1+e for x < = 3 (t - t1) .
The problem was run to time t = .3. The following table gives the computed

position E(t) of the free boundary, defined to be the point where y = .5

and determined by linearly interpolating values of i between adjacent cells
such that ; - .5 changes sign from one to the other. In all cases the front

was never spread out over more than one or two computational cells.

TABLE 4.1

Computed Position Z(t) of Free Boundary
£ t) t (t)
.09 0 .20 -.098
.10 -.005 .21 -+« 109
- 11 -.010 22 -.119
.12 -.019 «23 -.130
.13 ~.028 .24 ~. 142
.14 ~.037 «25 -. 154
.15 ~.046 «26 -. 156
.16 -.055 27 -.177
<17 -.064 .28 -, 189
.18 ~.076 »29 -, 200
.19 ~-.087 « 30 -.212
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In order to test that the algorithm described here does indeed predict
the cessation of gasification, cooling off of the solid surface, and
resumption of Neumann conditions at the boundary under the appropriate
circumstances, for nt > .3 we set 021 = 0, As expected, the motion of the
free boundary soon ceased, and the steady state value of the position was

computed as L = -.216. The solution between i = 61 and the free boundary

reached a steady state u with the slope u, = 3, as it should, from (2.2)

and (3.12).




5. Remarks on Monotonicity

We would like to conclude this paper with some suggestions regarding the
sorts of monotonicity properties we might expect for the solution. It is well
known, of course, that the solution of the Stefan problem depends
monotonically on the initial and boundary data, and also on the external
sources. In the case when ; = y(u) ¥x,t, then we also have such monotone
dependence. For, we are then dealing with the situation in which the
gasification front is moving and £(u) = 0 at the free boundary. 1In this
event, (3.11) is meaningful in a distributional sense and may be rewritten as

u, = AB(w) (5.1a)
for an appropriate function §:
' (u) = (1 - y(u) €' (u) . (5.1b)
But (5.1a) is in the same form as the Stefan problem, and the monotonicity
follows in the usual wav.

In general, we can show that this type of monotonicity does not hold for
the gasification problem. Consider a problem with f(u) = min(u,0) and

A =1, and with the boundary condition (f(u))x = 0 imposed at x = 0.
Suppose the initial data are wu{x,0) = -1 for 0 < x < 1, u{x,0}) = 0 for
1 <x <2, and u(x,0) =1 for x > 2. If we do not irradiate the boundary
of the solid, at x = 2, with enerqgy, the problem will evolve as a diffusion

process in 0 < x < 2 with homogeneous Neumann data at x = 2. Eventually

the steady state u(x) = - % for 0 < x < 2, ulx) =1 for x > 2 will be
. . . _ F(t) _ 1
achieved. On the other hand, suppose we irradiate the solid with = T3

for 0 <t < 8§ and F(t) = 0 for t > 8§ As we let § + 0, we find that
any Adiffusion of thermal enerqv in the region occupied by the solid in the

time interval 0 < t < 5 bhecomes negligible. Then, in the limit as § + 0,

we have for u(x,d) the following values: u(x,8) = =1 for 0 < x < 1,

o




u(x,8) =1 for x > 1. This is also the steady state achieved for the
problem. Thus, by irradiating the solid surface with energy, we have actually
reduced the steady state values of u 1in portions of the interior.

A tempting conjecture to make is that, if we have two solutions
u?(x), }?(x) and u;(x), ig(x) of the gasification algorithm, subjected to
the same boundary conditions and external energy source located at a point
with x~coordinate equal to X, then if u?(x,y) > ug(x,v)Vx,y and

;?(x,y) = ;;(x,y)Vx,y, it will follow, for any p » 0, that

X+E X+g
f f u: p(x,y)dxdy > f f u, p(x,y)dxdy
RN-'1 X-£ RN-1 X=-£
and
X+E X+E
I X Paenaxay > f [ 30 Pix,y)axdy
g X-¢ A1 X-¢

for all ¢ € R*. Here y merely labels the N ~ 1 coordinates of a point in
a hyperplane orthogonal to the x~axis. If the conjecture is true, we will get
monotonicity properties for Radon transforms of the energy distributions.
However, at this point we do not have any solid indications regarding the

accuracy of the conjecture.
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